Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
ACS Infect Dis ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787939

RESUMO

Multidrug-resistant Acinetobacter baumannii is a serious threat pathogen rapidly spreading in clinics and causing a range of complicated human infections. The major contributor to A. baumannii antibiotic resistance is the overproduction of AdeIJK and AdeABC multidrug efflux pumps of the resistance-nodulation-division (RND) superfamily of proteins. The dominant role of efflux in antibiotic resistance and the relatively high permeability of the A. baumannii outer membrane to amphiphilic compounds make this pathogen a promising target for the discovery of clinically relevant efflux pump inhibitors. In this study, we identified 4,6-diaminoquoniline analogs with inhibitory activities against A. baumannii AdeIJK efflux pump and followed up on these compounds with a focused synthetic program to improve the target specificity and to reduce cytotoxicity. We identified several candidates that potentiate antibacterial activities of antibiotics erythromycin, tetracycline, and novobiocin not only in the laboratory antibiotic susceptible strain A. baumannii ATCC17978 but also in multidrug-resistant clinical isolates AB5075 and AYE. The best analogs potentiated the activities of antibiotics in low micromolar concentrations, did not have antibacterial activities on their own, inhibited AdeIJK-mediated efflux of its fluorescent substrate ethidium ion, and had low cytotoxicity in A549 human lung epithelial cells.

2.
Commun Chem ; 7(1): 84, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609430

RESUMO

The ability Gram-negative pathogens have at adapting and protecting themselves against antibiotics has increasingly become a public health threat. Data-driven models identifying molecular properties that correlate with outer membrane (OM) permeation and growth inhibition while avoiding efflux could guide the discovery of novel classes of antibiotics. Here we evaluate 174 molecular descriptors in 1260 antimicrobial compounds and study their correlations with antibacterial activity in Gram-negative Pseudomonas aeruginosa. The descriptors are derived from traditional approaches quantifying the compounds' intrinsic physicochemical properties, together with, bacterium-specific from ensemble docking of compounds targeting specific MexB binding pockets, and all-atom molecular dynamics simulations in different subregions of the OM model. Using these descriptors and the measured inhibitory concentrations, we design a statistical protocol to identify predictors of OM permeation/inhibition. We find consistent rules across most of our data highlighting the role of the interaction between the compounds and the OM. An implementation of the rules uncovered in our study is shown, and it demonstrates the accuracy of our approach in a set of previously unseen compounds. Our analysis sheds new light on the key properties drug candidates need to effectively permeate/inhibit P. aeruginosa, and opens the gate to similar data-driven studies in other Gram-negative pathogens.

3.
J Pharmacol Exp Ther ; 388(2): 232-240, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37739806

RESUMO

Physical exercise induces physiologic adaptations and is effective at reducing the risk of premature death from all causes. Pharmacological exercise mimetics may be effective in the treatment of a range of diseases including obesity and metabolic syndrome. Previously, we described the development of SLU-PP-332, an agonist for the estrogen-related receptor (ERR)α, ß, and γ nuclear receptors that activates an acute aerobic exercise program. Here we examine the effects of this exercise mimetic in mouse models of obesity and metabolic syndrome. Diet-induced obese or ob/ob mice were administered SLU-PP-332, and the effects on a range of metabolic parameters were assessed. SLU-PP-332 administration mimics exercise-induced benefits on whole-body metabolism in mice including increased energy expenditure and fatty acid oxidation. These effects were accompanied by decreased fat mass accumulation. Additionally, the ERR agonist effectively reduced obesity and improved insulin sensitivity in models of metabolic syndrome. Pharmacological activation of ERR may be an effective method to treat metabolic syndrome and obesity. SIGNIFICANCE STATEMENT: An estrogen receptor-related orphan receptor agonist, SLU-PP-332, with exercise mimetic activity, holds promise as a therapeutic to treat metabolic diseases by decreasing fat mass in mouse models of obesity.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Camundongos , Animais , Síndrome Metabólica/tratamento farmacológico , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Metabolismo Energético , Receptores Citoplasmáticos e Nucleares , Receptor ERRalfa Relacionado ao Estrogênio , Estrogênios
4.
Circulation ; 149(3): 227-250, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-37961903

RESUMO

BACKGROUND: Cardiac metabolic dysfunction is a hallmark of heart failure (HF). Estrogen-related receptors ERRα and ERRγ are essential regulators of cardiac metabolism. Therefore, activation of ERR could be a potential therapeutic intervention for HF. However, in vivo studies demonstrating the potential usefulness of ERR agonist for HF treatment are lacking, because compounds with pharmacokinetics appropriate for in vivo use have not been available. METHODS: Using a structure-based design approach, we designed and synthesized 2 structurally distinct pan-ERR agonists, SLU-PP-332 and SLU-PP-915. We investigated the effect of ERR agonist on cardiac function in a pressure overload-induced HF model in vivo. We conducted comprehensive functional, multi-omics (RNA sequencing and metabolomics studies), and genetic dependency studies both in vivo and in vitro to dissect the molecular mechanism, ERR isoform dependency, and target specificity. RESULTS: Both SLU-PP-332 and SLU-PP-915 significantly improved ejection fraction, ameliorated fibrosis, and increased survival associated with pressure overload-induced HF without affecting cardiac hypertrophy. A broad spectrum of metabolic genes was transcriptionally activated by ERR agonists, particularly genes involved in fatty acid metabolism and mitochondrial function. Metabolomics analysis showed substantial normalization of metabolic profiles in fatty acid/lipid and tricarboxylic acid/oxidative phosphorylation metabolites in the mouse heart with 6-week pressure overload. ERR agonists increase mitochondria oxidative capacity and fatty acid use in vitro and in vivo. Using both in vitro and in vivo genetic dependency experiments, we show that ERRγ is the main mediator of ERR agonism-induced transcriptional regulation and cardioprotection and definitively demonstrated target specificity. ERR agonism also led to downregulation of cell cycle and development pathways, which was partially mediated by E2F1 in cardiomyocytes. CONCLUSIONS: ERR agonists maintain oxidative metabolism, which confers cardiac protection against pressure overload-induced HF in vivo. Our results provide direct pharmacologic evidence supporting the further development of ERR agonists as novel HF therapeutics.


Assuntos
Insuficiência Cardíaca , Camundongos , Animais , Cardiomegalia/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Ácidos Graxos/metabolismo
5.
J Immunol ; 212(4): 689-701, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38149922

RESUMO

The classical pathway (CP) is a potent mechanism for initiating complement activity and is a driver of pathology in many complement-mediated diseases. The CP is initiated via activation of complement component C1, which consists of the pattern recognition molecule C1q bound to a tetrameric assembly of proteases C1r and C1s. Enzymatically active C1s provides the catalytic basis for cleavage of the downstream CP components, C4 and C2, and is therefore an attractive target for therapeutic intervention in CP-driven diseases. Although an anti-C1s mAb has been Food and Drug Administration approved, identifying small-molecule C1s inhibitors remains a priority. In this study, we describe 6-(4-phenylpiperazin-1-yl)pyridine-3-carboximidamide (A1) as a selective, competitive inhibitor of C1s. A1 was identified through a virtual screen for small molecules that interact with the C1s substrate recognition site. Subsequent functional studies revealed that A1 dose-dependently inhibits CP activation by heparin-induced immune complexes, CP-driven lysis of Ab-sensitized sheep erythrocytes, CP activation in a pathway-specific ELISA, and cleavage of C2 by C1s. Biochemical experiments demonstrated that A1 binds directly to C1s with a Kd of ∼9.8 µM and competitively inhibits its activity with an inhibition constant (Ki) of ∼5.8 µM. A 1.8-Å-resolution crystal structure revealed the physical basis for C1s inhibition by A1 and provided information on the structure-activity relationship of the A1 scaffold, which was supported by evaluating a panel of A1 analogs. Taken together, our work identifies A1 as a new class of small-molecule C1s inhibitor and lays the foundation for development of increasingly potent and selective A1 analogs for both research and therapeutic purposes.


Assuntos
Complemento C1s , Via Clássica do Complemento , Animais , Ovinos , Peptídeo Hidrolases , Complemento C1/metabolismo , Endopeptidases , Piridinas/farmacologia
6.
Am J Pathol ; 193(12): 1969-1987, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37717940

RESUMO

A gradual decline in renal function occurs even in healthy aging individuals. In addition to aging, per se, concurrent metabolic syndrome and hypertension, which are common in the aging population, can induce mitochondrial dysfunction and inflammation, which collectively contribute to age-related kidney dysfunction and disease. This study examined the role of the nuclear hormone receptors, the estrogen-related receptors (ERRs), in regulation of age-related mitochondrial dysfunction and inflammation. The ERRs were decreased in both aging human and mouse kidneys and were preserved in aging mice with lifelong caloric restriction (CR). A pan-ERR agonist, SLU-PP-332, was used to treat 21-month-old mice for 8 weeks. In addition, 21-month-old mice were treated with a stimulator of interferon genes (STING) inhibitor, C-176, for 3 weeks. Remarkably, similar to CR, an 8-week treatment with a pan-ERR agonist reversed the age-related increases in albuminuria, podocyte loss, mitochondrial dysfunction, and inflammatory cytokines, via the cyclic GMP-AMP synthase-STING and STAT3 signaling pathways. A 3-week treatment of 21-month-old mice with a STING inhibitor reversed the increases in inflammatory cytokines and the senescence marker, p21/cyclin dependent kinase inhibitor 1A (Cdkn1a), but also unexpectedly reversed the age-related decreases in PPARG coactivator (PGC)-1α, ERRα, mitochondrial complexes, and medium chain acyl coenzyme A dehydrogenase (MCAD) expression. These studies identified ERRs as CR mimetics and as important modulators of age-related mitochondrial dysfunction and inflammation. These findings highlight novel druggable pathways that can be further evaluated to prevent progression of age-related kidney disease.


Assuntos
Inflamação , Rim , Camundongos , Humanos , Animais , Idoso , Lactente , Recém-Nascido , Rim/metabolismo , Inflamação/metabolismo , Estrogênios/metabolismo , Mitocôndrias/metabolismo , Citocinas/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
7.
Pharmacol Rev ; 75(6): 1233-1318, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37586884

RESUMO

The NR superfamily comprises 48 transcription factors in humans that control a plethora of gene network programs involved in a wide range of physiologic processes. This review will summarize and discuss recent progress in NR biology and drug development derived from integrating various approaches, including biophysical techniques, structural studies, and translational investigation. We also highlight how defective NR signaling results in various diseases and disorders and how NRs can be targeted for therapeutic intervention via modulation via binding to synthetic lipophilic ligands. Furthermore, we also review recent studies that improved our understanding of NR structure and signaling. SIGNIFICANCE STATEMENT: Nuclear receptors (NRs) are ligand-regulated transcription factors that are critical regulators of myriad physiological processes. NRs serve as receptors for an array of drugs, and in this review, we provide an update on recent research into the roles of these drug targets.


Assuntos
Farmacologia Clínica , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Transporte , Ligantes
8.
Eur J Med Chem ; 258: 115582, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37421886

RESUMO

Estrogen-related receptors (ERR) are an orphan nuclear receptor sub-family that play a critical role in regulating gene transcription for several physiological processes including mitochondrial function, cellular energy utilization and homeostasis. They have also been implicated to play a role in several pathological conditions. Herein, we report the identification, synthesis, structure-activity relationships and pharmacological evaluation of a new chemical series of potent pan-ERR agonists. This template was designed for ERRγ starting from the known acyl hydrazide template and compounds such as agonist GSK-4716 employing a structure-based drug design approach. This led to the preparation of a series of 2,5-disubstituted thiophenes from which several were found to be potent agonists of ERRγ in cell-based co-transfection assays. Additionally, direct binding to ERRγ was established through 1H NMR protein-ligand binding experiments. Compound optimization revealed that the phenolic or aniline groups could be replaced with a boronic acid moiety, which was able to maintain activity and demonstrated improved metabolic stability in microsomal in vitro assays. Further pharmacological evaluation of these compounds showed that they had roughly equivalent agonist activity on ERR isoforms α and ß representing an ERR pan-agonist profile. One potent agonist, SLU-PP-915 (10s), which contained a boronic acid moiety was profiled in gene expression assays and found to significantly upregulate the expression of ERR target genes such as peroxisome-proliferator activated receptor γ co-activators-1α, lactate dehydrogenase A, DNA damage inducible transcript 4 and pyruvate dehydrogenase kinase 4 both in vitro and in vivo.


Assuntos
Estrogênios , Isoformas de Proteínas
9.
Bioorg Med Chem Lett ; 89: 129301, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37094726

RESUMO

An internal collection of commercial and synthetically derived small molecule compounds was screened against several drug-resistant bacterial pathogens. Compound 1, a known N, N-disubstituted 2-aminobenzothiazole, was found to be a potent inhibitor of Staphylococcus aureus and several associated clinically relevant strains of methicillin-resistant S. aureus suggesting a possible novel mechanism of inhibition. It failed to show activity in any of the Gram-negative pathogens it was tested in. Evaluation in Escherichia coli BW25113 and Pseudomonas aeruginosa PAO1, as well as in their respective hyperporinated and efflux pump-deletion mutants revealed that activity in Gram-negative bacteria is diminished because this benzothiazole scaffold is a substrate for bacterial efflux pumps. Several analogs of 1 were synthesized to generate basic structure-activity relationships for the scaffold which highlighted that the N-propyl imidazole moiety was critical for the observed antibacterial activity.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Relação Estrutura-Atividade , Bactérias , Escherichia coli , Proteínas de Bactérias
10.
ACS Chem Biol ; 18(4): 756-771, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-36988910

RESUMO

Repetitive physical exercise induces physiological adaptations in skeletal muscle that improves exercise performance and is effective for the prevention and treatment of several diseases. Genetic evidence indicates that the orphan nuclear receptors estrogen receptor-related receptors (ERRs) play an important role in skeletal muscle exercise capacity. Three ERR subtypes exist (ERRα, ß, and γ), and although ERRß/γ agonists have been designed, there have been significant difficulties in designing compounds with ERRα agonist activity. Additionally, there are limited synthetic agonists that can be used to target ERRs in vivo. Here, we report the identification of a synthetic ERR pan agonist, SLU-PP-332, that targets all three ERRs but has the highest potency for ERRα. Additionally, SLU-PP-332 has sufficient pharmacokinetic properties to be used as an in vivo chemical tool. SLU-PP-332 increases mitochondrial function and cellular respiration in a skeletal muscle cell line. When administered to mice, SLU-PP-332 increased the type IIa oxidative skeletal muscle fibers and enhanced exercise endurance. We also observed that SLU-PP-332 induced an ERRα-specific acute aerobic exercise genetic program, and the ERRα activation was critical for enhancing exercise endurance in mice. These data indicate the feasibility of targeting ERRα for the development of compounds that act as exercise mimetics that may be effective in the treatment of numerous metabolic disorders and to improve muscle function in the aging.


Assuntos
Estrogênios , Tolerância ao Exercício , Receptores de Estrogênio , Animais , Camundongos , Tolerância ao Exercício/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Receptores de Estrogênio/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Estrogênios/química , Estrogênios/farmacologia , Receptor ERRalfa Relacionado ao Estrogênio
11.
Nat Commun ; 13(1): 7131, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414641

RESUMO

The nuclear receptor REV-ERB plays an important role in a range of physiological processes. REV-ERB behaves as a ligand-dependent transcriptional repressor and heme has been identified as a physiological agonist. Our current understanding of how ligands bind to and regulate transcriptional repression by REV-ERB is based on the structure of heme bound to REV-ERB. However, porphyrin (heme) analogues have been avoided as a source of synthetic agonists due to the wide range of heme binding proteins and potential pleotropic effects. How non-porphyrin synthetic agonists bind to and regulate REV-ERB has not yet been defined. Here, we characterize a high affinity synthetic REV-ERB agonist, STL1267, and describe its mechanism of binding to REV-ERB as well as the method by which it recruits transcriptional corepressor both of which are unique and distinct from that of heme-bound REV-ERB.


Assuntos
Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Porfirinas , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Heme/metabolismo , Ligantes , Porfirinas/farmacologia
12.
ACS Infect Dis ; 8(10): 2149-2160, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36070489

RESUMO

Optimization of compound permeation into Gram-negative bacteria is one of the most challenging tasks in the development of antibacterial agents. Two permeability barriers─the passive diffusion barrier of the outer membrane (OM) and active drug efflux─act synergistically to protect cells from the antibacterial action of compounds. In Escherichia coli (E. coli) and relatives, these two barriers sieve compounds based on different physicochemical properties that are defined by their interactions with OM porins and efflux pumps, respectively. In this study, we critically tested the hypothesis that the best substrates and inhibitors of efflux pumps are compounds that can effectively permeate the OM and are available at relatively high concentrations in the periplasm. For this purpose, we filtered a large subset of the ZINC15 database of commercially available compounds for compounds containing a primary amine, a chemical feature known to facilitate the uptake through E. coli general porins. The assembled library was screened by ensemble docking to AcrA, the periplasmic component of the AcrAB-TolC efflux pump, followed by experimental testing of the top predicted binders for antibacterial activities, efflux recognition, and inhibition. We found that the filtered primary amine library is a rich source of compounds with efflux-inhibiting activities and identified efflux pump inhibitors with novel chemical scaffolds effective against E. coli AcrAB-TolC and efflux pumps of multidrug-resistant clinical isolates of Acinetobacter baumannii. However, primary amines are not required for the recognition of compounds by efflux pumps and their efflux-inhibitory activities.


Assuntos
Escherichia coli , Proteínas de Membrana Transportadoras , Aminas , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Membrana Transportadoras/química , Porinas
13.
ACS Infect Dis ; 7(9): 2650-2665, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34379382

RESUMO

Antibiotic resistance poses an immediate and growing threat to human health. Multidrug efflux pumps are promising targets for overcoming antibiotic resistance with small-molecule therapeutics. Previously, we identified a diaminoquinoline acrylamide, NSC-33353, as a potent inhibitor of the AcrAB-TolC efflux pump in Escherichia coli. This inhibitor potentiates the antibacterial activities of novobiocin and erythromycin upon binding to the membrane fusion protein AcrA. It is also a substrate for efflux and lacks appreciable intrinsic antibacterial activity of its own in wild-type cells. Here, we have modified the substituents of the cinnamoyl group of NSC-33353, giving rise to analogs that retain the ability to inhibit efflux, lost the features of the efflux substrates, and gained antibacterial activity in wild-type cells. The replacement of the cinnamoyl group with naphthyl isosteres generated compounds that lack antibacterial activity but are both excellent efflux pump inhibitors and substrates. Surprisingly, these inhibitors potentiate the antibacterial activity of novobiocin but not erythromycin. Surface plasmon resonance experiments and molecular docking suggest that the replacement of the cinnamoyl group with naphthyl shifts the affinity of the compounds away from AcrA to the AcrB transporter, making them better efflux substrates and changing their mechanism of inhibition. These results provide new insights into the duality of efflux substrate/inhibitor features in chemical scaffolds that will facilitate the development of new efflux pump inhibitors.


Assuntos
Proteínas de Escherichia coli , Amidas/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética
14.
Front Pharmacol ; 12: 685308, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194331

RESUMO

Repurposed drugs that block the interaction between the SARS-CoV-2 spike protein and its receptor ACE2 could offer a rapid route to novel COVID-19 treatments or prophylactics. Here, we screened 2,701 compounds from a commercial library of drugs approved by international regulatory agencies for their ability to inhibit the binding of recombinant, trimeric SARS-CoV-2 spike protein to recombinant human ACE2. We identified 56 compounds that inhibited binding in a concentration-dependent manner, measured the IC50 of binding inhibition, and computationally modeled the docking of the best inhibitors to the Spike-ACE2 binding interface. The best candidates were Thiostrepton, Oxytocin, Nilotinib, and Hydroxycamptothecin with IC50's in the 4-9 µM range. These results highlight an effective screening approach to identify compounds capable of disrupting the Spike-ACE2 interaction, as well as identify several potential inhibitors of the Spike-ACE2 interaction.

15.
bioRxiv ; 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33851160

RESUMO

Repurposed drugs that block the interaction between the SARS-CoV-2 spike protein and its receptor ACE2 could offer a rapid route to novel COVID-19 treatments or prophylactics. Here, we screened 2701 compounds from a commercial library of drugs approved by international regulatory agencies for their ability to inhibit the binding of recombinant, trimeric SARS-CoV-2 spike protein to recombinant human ACE2. We identified 56 compounds that inhibited binding by <90%, measured the EC 50 of binding inhibition, and computationally modeled the docking of the best inhibitors to both Spike and ACE2. These results highlight an effective screening approach to identify compounds capable of disrupting the Spike-ACE2 interaction as well as identifying several potential inhibitors that could serve as templates for future drug discovery efforts.

16.
Acc Chem Res ; 54(4): 930-939, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33539084

RESUMO

Antibiotics are miracle drugs that can cure infectious bacterial diseases. However, their utility is challenged by antibiotic-resistant bacteria emerging in clinics and straining modern medicine and our ways of life. Certain bacteria such as Gram-negative (Gram(-)) and Mycobacteriales species are intrinsically resistant to most clinical antibiotics and can further gain multidrug resistance through mutations and plasmid acquisition. These species stand out by the presence of an additional external lipidic membrane, the outer membrane (OM), that is composed of unique glycolipids. Although formidable, the OM is a passive permeability barrier that can reduce penetration of antibiotics but cannot affect intracellular steady-state concentrations of drugs. The two-membrane envelopes are further reinforced by active efflux transporters that expel antibiotics from cells against their concentration gradients. The major mechanism of antibiotic resistance in Gram(-) pathogens is the active efflux of drugs, which acts synergistically with the low permeability barrier of the OM and other mutational and plasmid-borne mechanisms of antibiotic resistance.The synergy between active efflux and slow uptake offers Gram(-) bacteria an impressive degree of protection from potentially harmful chemicals, but it is also their Achilles heel. Kinetic studies have revealed that even small changes in the efficiency of either of the two factors can have dramatic effects on drug penetration into the cell. In line with these expectations, two major approaches to overcome this antibiotic resistance mechanism are currently being explored: (1) facilitation of antibiotic penetration across the outer membranes and (2) avoidance and inhibition of clinically relevant multidrug efflux pumps. Herein we summarize the progress in the latter approach with a focus on efflux pumps from the resistance-nodulation-division (RND) superfamily. The ability to export various substrates across the OM at the expense of the proton-motive force acting on the inner membrane and the engagement of accessory proteins for their functions are the major mechanistic advantages of these pumps. Both the RND transporters and their accessory proteins are being targeted in the discovery of efflux pump inhibitors, which in combination with antibiotics can potentiate antibacterial activities. We discuss intriguing relationships between substrates and inhibitors of efflux pumps, as these two types of ligands face similar barriers and binding sites in the transporters and accessory proteins and both types of activities often occur with the same chemical scaffold. Several distinct chemical classes of efflux inhibitors have been discovered that are as structurally diverse as the substrates of efflux pumps. Recent mechanistic insights, both empirical and computational, have led to the identification of features that distinguish OM permeators and efflux pump avoiders as well as efflux inhibitors from substrates. These findings suggest a path forward for optimizing the OM permeation and efflux-inhibitory activities in antibiotics and other chemically diverse compounds.


Assuntos
Antibacterianos/química , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Membrana Externa Bacteriana/metabolismo , Fluoroquinolonas/química , Fluoroquinolonas/metabolismo , Fluoroquinolonas/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/efeitos dos fármacos , Proteínas de Membrana Transportadoras/química , Testes de Sensibilidade Microbiana
17.
mBio ; 12(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468691

RESUMO

Antibiotic-resistant bacteria rapidly spread in clinical and natural environments and challenge our modern lifestyle. A major component of defense against antibiotics in Gram-negative bacteria is a drug permeation barrier created by active efflux across the outer membrane. We identified molecular determinants defining the propensity of small peptidomimetic molecules to avoid and inhibit efflux pumps in Pseudomonas aeruginosa, a human pathogen notorious for its antibiotic resistance. Combining experimental and computational protocols, we mapped the fate of the compounds from structure-activity relationships through their dynamic behavior in solution, permeation across both the inner and outer membranes, and interaction with MexB, the major efflux transporter of P. aeruginosa We identified predictors of efflux avoidance and inhibition and demonstrated their power by using a library of traditional antibiotics and compound series and by generating new inhibitors of MexB. The identified predictors will enable the discovery and optimization of antibacterial agents suitable for treatment of P. aeruginosa infections.IMPORTANCE Efflux pump avoidance and inhibition are desired properties for the optimization of antibacterial activities against Gram-negative bacteria. However, molecular and physicochemical interactions defining the interface between compounds and efflux pumps remain poorly understood. We identified properties that correlate with efflux avoidance and inhibition, are predictive of similar features in structurally diverse compounds, and allow researchers to distinguish between efflux substrates, inhibitors, and avoiders in P. aeruginosa The developed predictive models are based on the descriptors representative of different clusters comprising a physically intuitive combination of properties. Molecular shape (represented by acylindricity), amphiphilicity (anisotropic polarizability), aromaticity (number of aromatic rings), and the partition coefficient (LogD) are physicochemical predictors of efflux inhibitors, whereas interactions with Pro668 and Leu674 residues of MexB distinguish between inhibitors/substrates and efflux avoiders. The predictive models and efflux rules are applicable to compounds with unrelated chemical scaffolds and pave the way for development of compounds with the desired efflux interface properties.


Assuntos
Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/química , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Proteínas de Membrana Transportadoras/química , Modelos Biológicos , Peptidomiméticos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Sítios de Ligação , Transporte Biológico/efeitos dos fármacos , Expressão Gênica , Cinética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Modelos Moleculares , Peptidomiméticos/síntese química , Peptidomiméticos/metabolismo , Análise de Componente Principal , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Relação Estrutura-Atividade , Termodinâmica
18.
J Pharmacol Exp Ther ; 375(2): 367-375, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32913007

RESUMO

Neuropathic pain is a debilitating public health concern for which novel non-narcotic therapeutic targets are desperately needed. Using unbiased transcriptomic screening of the dorsal horn spinal cord after nerve injury we have identified that Gpr183 (Epstein-Barr virus-induced gene 2) is upregulated after chronic constriction injury (CCI) in rats. GPR183 is a chemotactic receptor known for its role in the maturation of B cells, and the endogenous ligand is the oxysterol 7α,25-dihydroxycholesterol (7α,25-OHC). The role of GPR183 in the central nervous system is not well characterized, and its role in pain is unknown. The profile of commercially available probes for GPR183 limits their use as pharmacological tools to dissect the roles of this receptor in pathophysiological settings. Using in silico modeling, we have screened a library of 5 million compounds to identify several novel small-molecule antagonists of GPR183 with nanomolar potency. These compounds are able to antagonize 7α,25-OHC-induced calcium mobilization in vitro with IC50 values below 50 nM. In vivo intrathecal injections of these antagonists during peak pain after CCI surgery reversed allodynia in male and female mice. Acute intrathecal injection of the GPR183 ligand 7α,25-OHC in naïve mice induced dose-dependent allodynia. Importantly, this effect was blocked using our novel GPR183 antagonists, suggesting spinal GPR183 activation as pronociceptive. These studies are the first to reveal a role for GPR183 in neuropathic pain and identify this receptor as a potential target for therapeutic intervention. SIGNIFICANCE STATEMENT: We have identified several novel GPR183 antagonists with nanomolar potency. Using these antagonists, we have demonstrated that GPR183 signaling in the spinal cord is pronociceptive. These studies are the first to reveal a role for GPR183 in neuropathic pain and identify it as a potential target for therapeutic intervention.


Assuntos
Neuralgia/metabolismo , Oxisteróis/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Medula Espinal/metabolismo , Animais , Feminino , Células HL-60 , Humanos , Masculino , Camundongos , Neuralgia/tratamento farmacológico , Neuralgia/patologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Transdução de Sinais , Medula Espinal/patologia
19.
ACS Chem Biol ; 15(9): 2338-2345, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32897058

RESUMO

The estrogen related receptors (ERRs) are a subgroup of nuclear receptors that play a role in regulation of cellular metabolism. Prostate cancer (PCa) cells display altered metabolic signatures, such as the Warburg effect, and the ERRs have been implicated in driving this phenotype. Despite the lack of a known endogenous ligand, synthetic ligands that target the ERRs have been discovered. For example, the ERRα inverse agonist XCT790 modulates metabolic pathways in PCa cells, but it also functions as a mitochondrial uncoupler independent of targeting ERRα. Here, we describe a novel dual ERRα/γ inverse agonist, SLU-PP-1072, derived from the GSK4716 ERRγ agonist scaffold that is distinct from the XCT790 scaffold. SLU-PP-1072 alters PCa cell metabolism and gene expression, resulting in cell cycle dysregulation and increased apoptosis without acute mitochondrial uncoupling activity. Our data suggest that inhibition of ERRα/γ may be beneficial in treatment of PCa, and SLU-PP-1072 provides a unique chemical tool to evaluate the pharmacology of ERRα and ERRγ.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzotiazóis/farmacologia , Furanos/farmacologia , Receptores de Estrogênio/antagonistas & inibidores , Efeito Warburg em Oncologia/efeitos dos fármacos , Antineoplásicos/síntese química , Benzotiazóis/síntese química , Agonismo Inverso de Drogas , Furanos/síntese química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Células PC-3 , Receptor ERRalfa Relacionado ao Estrogênio
20.
J Chem Inf Model ; 60(6): 2838-2847, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32453589

RESUMO

Drug discovery faces a crisis. The industry has used up the "obvious" space in which to find novel drugs for biomedical applications, and productivity is declining. One strategy to combat this is rational approaches to expand the search space without relying on chemical intuition, to avoid rediscovery of similar spaces. In this work, we present proof of concept of an approach to rationally identify a "chemical vocabulary" related to a specific drug activity of interest without employing known rules. We focus on the pressing concern of multidrug resistance in Pseudomonas aeruginosa by searching for submolecules that promote compound entry into this bacterium. By synergizing theory, computation, and experiment, we validate our approach, explain the molecular mechanism behind identified fragments promoting compound entry, and select candidate compounds from an external library that display good permeation ability.


Assuntos
Antibacterianos , Vocabulário , Algoritmos , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Aprendizado de Máquina , Pseudomonas aeruginosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA